CALIDAD DE LAS AGUAS SUBTERRÁNEAS EN LAS ÁREAS MINERAS DEL DEPARTAMENTO DE ORURO - BOLIVIA

* Dr.- Ing. Gerardo Zamora (UTO) - **Dr. Clio Bosia (IRD) - ** Dra. Corinne Casiot (IRD) - ** Dr. Jacques Gardon (IRD) - * M.Sc. Ing. Pedro Vallejos (UTO)

Resumen

Uno de los problemas ambientales más frecuentes de las operaciones mineras subterráneas en Bolivia; en especial, de aquellas que ignoran y/o operan con bajas performances ambientales, es la contaminación de las aguas superficiales y subterráneas.

El objetivo del trabajo de investigación se enmarco en determinar la calidad de las aguas subterráneas de consumo humano y las que son utilizadas para el riego en las zonas mineras más importantes del departamento de Oruro – Bolivia.

Un total de 32 puntos de muestreo fueron considerados en el estudio; mismos que, consideran los distritos mineros de Machacamarca, Sora Sora, Huanuni, Poopo, Antequera, Totoral, Pazña, Toledo y Challacollo. Las muestras preservadas, fueron sometidas a análisis efectuados en el laboratorio de "Hydro Sciences en Montpellier", Francia; por elementos mayoritarios: CO₃²⁻, HCO₃-, Cl⁻, NO₃-, SO₄²⁻, Ca²⁺, Mg²⁺, Na⁺, K⁺, F⁻; y también, por los metales: Al, V; Cr, Fe, Mn, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Cs, Ba, Tl, Pb, U.

Palabras clave: Aguas subterráneas; minería; Bolivia

Abstract

El estudio permite concluir que el agua de riego utilizada en Machacamarca, Sora Sora, Toledo y Challacollo, no es aceptable. Los análisis han mostrado también que, los pueblos situados en áreas mineras consumen agua de buena calidad, a excepción de Antequera. De la misma manera, los análisis de las aguas de consumo en los pueblos de zonas no mineras, que obtienen agua de pozos profundos, presentan contaminación por arsénico y níquel; que tienen carácter natural.

One of the most frequent environmental problems of underground mining operations in Bolivia; Especially those that ignore and / or operate with low environmental performances, is the contamination of surface and groundwater.

The objective of the research work was to determine the quality of groundwater for human consumption and those used for irrigation in the most important mining areas of the department of Oruro - Bolivia.

A total of 32 sampling points were considered in the study; Which consider the mining districts of Machacamarca, Sora Sora, Huanuni, Poopo, Antequera, Totoral, Pazña, Toledo and Challacollo. The preserved samples were submitted to analyzes carried out in the laboratory of "Hydro Sciences in Montpellier", France; By major elements: CO32-, HCO3-, Cl-, NO3-, SO42-, Ca2 +, Mg2 +, Na +, K +, F-; And also, by the metals: Al, V; Cr, Fe, Mn, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Cs, Ba, Tl, Pb, U.

The study concludes that the irrigation water used in Machacamarca, Sora Sora, Toledo and Challacollo, is not acceptable. Analysis has also shown that villages in mining areas consume good quality water, with the exception of Antequera. Likewise, analyzes of drinking water in villages in non-mining areas, which obtain water from deep wells, are contaminated with arsenic and nickel; Which have a natural character.

Keywords. Groundwater; mining; Bolivia

1. INTRODUCCIÓN

Estudios ambientales en las áreas mineras del Departamento de Oruro han establecido la calidad de las aguas superficiales a partir de una caracterización físico-química de muestras de aguas superficiales y sedimentos; además de una caracterización biológica de la fauna piscícola y béntica. En especial, la preocupación se enmarcó a la determinación de metales pesados en aguas superficiales que drenan en su mayor parte al Lago Poopó.

Los resultados de dichos estudios demostraron que: La calidad del agua en el Lago es "altamente salina"; las concentraciones de sólidos suspendidos y disueltos, además de las concentraciones de As, Pb, Cd y Zn se encuentran muy por encima de los límites permisibles

Asimismo, la carga de sólidos suspendidos y metales pesados disueltos, aportados por los ríos tributarios al lago Poopó, es el siguiente:

TOTAL DE TODOS LOS RIOS

Solidos suspendidos: 3'358,307.87 kg/dia Cloruros: 2'215,448.99 kg/dia Zinc: 3970.49 kg/dia Arsenico: 821.62 kg/dia

Cadmio: 39.945 kg/dia Plomo: 73.05 kg/dia

El aporte porcentual de metales pesados de los principales ríos tributarios se resume:

<u>Río Desaguadero</u>: 70% As - 64% Pb y 4.27% Zn y 2.18% Cd

<u>Río Antequera</u>: 57 %Zn – 32.9 %Cd y 0.66%

Pb

<u>Río Huanuni</u>: 61.2% Cd – 2.23% Pb – 34.3% Zn

La enorme contaminación por metales pesados se debe a que muchas empresas mineras que operan en el sector, no cumplen las normativas ambientales vigentes. Asimismo, las aguas ácidas de mina y los pasivos ambientales El objetivo de la presente investigación se enmarca en determinar la calidad de las aguas de consumo y de riego de las comunidades mineras. El alcance del presente trabajo de investigación se circunscribe a determinar la calidad de las aguas de consumo y riego en los distritos mineros de Machacamarca, Sora Sora, Huanuni, Poopó, Antequera, Totoral, Pazña, Toledo y Challacollo; a partir de análisis físico-químicos por elementos mayoritarios y elementos traza (metales pesados) de muestras obtenidas en el mes de mayo del 2011.

2. CLASIFICACIÓN DE AGUAS EN LA NORMATIVA BOLIVIANA

De acuerdo a la Normativa Ambiental Boliviana, los cuerpos acuosos se clasifican según a su aptitud de uso en: mineros (desmontes y colas), generados en las décadas pasadas, no son tratados y no han sido estabilizados químicamente, respectivamente; por lo que, se constituyen en fuentes potenciales de acides y carga de metales pesados. Finalmente, el Manejo de Cuencas no es adecuado.

Sin embargo, pocos estudios han abordado como objeto de investigación, la calidad de las aguas que son consumidas por los pobladores de comunidades mineras y las que son utilizadas para el riego de parcelas.

Clase A: Apta para su uso en abastecimiento doméstico de agua potable después de desinfección y sin ningún tratamiento.

Clase B: Apta para riego y para la protección de los recursos hidrobiológicos; y no apta para su abastecimiento doméstico sin previo tratamiento físico-químico y desinfección.

Clase C: Apta para la protección de los recursos hidrobiológicos (cría natural y/o intensiva de peces); y no apta para riego y menos para su abastecimiento doméstico sin previo tratamiento físico-químico y desinfección.

Clase D: Apta para su uso industrial y navegación; y no apta para la protección de los recursos hidrobiológicos; ni riego y menos para su abastecimiento doméstico sin previo tratamiento físico-químico y desinfección.

3. TOMA DE MUESTRAS PROCEDIMIENTO EXPERIMENTAL

Un total de 32 puntos de muestreo fueron considerados en el estudio. Las tablas 1 y 2,

muestran la ubicación georeferenciada y el sitio de donde se tomaron las muestras de las aguas usadas para consumo y para riego, respectivamente.

Nº	Ubicación	Distr.	Descrip.
	N(m)/E(m)		•
1	7953604/724462	Totoral	Agua de la Pileta Pública
2	7989788/715377	Sora Sora	Agua de la Pileta Pública
3	7988270/716688		Agua de Toma de Socotilla
4	7966877/714578	Poopó	Agua de Pileta
5	7965820/718386		Agua de la Toma
6	7942528/719367	Pazña	Agua de Pileta
7	7944587/726153		Agua de Toma Urmiri
8	7942605/719600		Agua Tanque Distribución
9	7989676/709357	Machacamarca	Agua de Pileta
10	7989423/716624		Agua de la Toma Abajo
11	7989676/716884		Agua de la Toma Arriba
12	7974189/732860	Huanuni	Agua de la Toma Kewalluni
13	7976224/730751		Agua Planta Tratamiento
14	7976879/728935		Agua Pileta Pública
15	7976217/727779		Agua Tanque Distribución
16	7955543/727978	Antequera	Agua de la Pileta
17	7953576/729712		Agua de Toma Chapana
18	7953914/729538		Agua de Toma Sorgente
19	7955429/728234		Agua del Tanque
20	7988957/668523	Toledo	Agua de la Pileta Pública
21	7989157/668017		Agua del Tanque de
			Distribución
22	7980077/653148		Agua de Pozo Profundo
23	8000093/686321	Challacollo	Agua de la Pileta
24	8000109/686572		Agua de la Viguiña

Tabla 1.- Ubicación de los Puntos de Muestreo de las Muestras de Agua de Uso Potable

Nº	Ubicación	Distr.	Descrip.
	N(m)/E(m)		_
1	7987711/717552	Sora Sora	Agua de Canal Antiguo
2	7965988/718530	Poopó	Agua de Pozo Profundo
3	7944899/724193	Pazña	Aguas Termales para Riego
4	7989995/709008	Machacamarca	Agua del Río
5	7974179/732876	Huanuni	Agua de Vertiente
6	7975638/728060		Locketa
7	7985173/663231	Toledo	Río Matarjahoira
8	7998472/682512	Challacollo	Río Desaguadero

Tabla 2.- Ubicación de los Puntos de Muestreo de las Muestras de Agua Usadas para Riego

Las muestras de agua, adecuadamente preservadas, fueron enviadas al Laboratorio de "Hydro Sciences en Montpellier – Francia"; para que sean sometidas a análisis físico-químicos por: Elementos mayoritarios.- CO₃²⁻, HCO₃-, Cl⁻, NO₃-, SO₄²⁻, Ca²⁺, Mg²⁺, Na⁺, K⁺,

F⁻; Además de metales traza: Al, V; Cr, Fe, Mn, Ni, Cu, Zn, As, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, U.

4. RESULTADOS OBTENIDOS

En las tablas siguientes se presentan los resultados de los análisis químicos realizados:

Parámetro	Unidad	Tototral (1)	Sora Sora (1)	Sora Sora (2)	Poopó (1)	Poopó (2)	Pazña (1)	Pazña (2)	Pazña (3)	Clase A	Clase B
Temperatura	°C	15,4	17,5	15,7	13,5	11,3	11,6	9,2	11,7		
pH		7,65	7,18	7,24	7,2	7,7	7,66	7,56	8,28	6 – 8,5	6 – 9
Conductividad	μS	169,9	439,7	462,2	350,2	305,9	328	302,1	342,4		
ORP	mV	60	74	109	81	80	70	38	43		
TDS	μg/L	104,8	297,8	315,6	240,8	190,7	210,7	192,7	219,5	1000	1000

Tabla 3a.- Resultados del análisis físico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Macha (1)	Macha (2)	Macha (3)	Huanuni (1)	Huanuni (2)	Huanuni (3)	Huanuni (4)	Clase A	Clase B
Temperatura	°C	15,7	15,2	15,5	12,5	13	16	13,8		
pH		6,9	6,22	6,89	6,99	8,05	8,02	7,88	6-	6 – 9
Conductividad	μS	498,1	564,4	486,2	217,4	205,2	205,4	294,4		
ORP	mV	105	190	100	121	65	53	72		
TDS	μg/L	338,9	386,7	334,2	142,5	134,8	133,9	195,7	1000	1000

Tabla 3b.- Resultados del análisis físico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Anteque	Anteque	Anteque	Anteque	Toledo	Toledo	Toledo	Clase	Clase
		ra (1)	ra (2)	ra (3)	ra (4)	(1)	(2)	(3)	A	В
Temperatura	°C	9,9	8,4	11,9	11,5	11,4	12,8	15,3		
pН		7,21	7,76	7,5	7,5	7,44	7,66	7,75	6 - 8,5	6 – 9
Conductividad	μS	237,7	234,3	235,6	231,6	616,4	608,8	632,2		
ORP	mV	80	50	26	59	50	43	42		
TDS	μg/L	150,3	148,6	148,3	146,7	406,7	401,8	414,9	1000	1000

Tabla 3c.- Resultados del análisis físico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Achacollo (1)	Achacollo (2)	Clase A	Clase B
Temperatura	°C	8,9	12,5		
pН		8,01	10	6 – 8,5	6 – 9
Conductividad	μS	1922	4205		
ORP	mV	85	43		
TDS	μg/L	1335	3100	1000	1000
Oxígeno	μg/L	6	9	>80% sat	>70% sat

Tabla 3d.- Resultados del análisis físico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Totoral (1)	Sora Sora (1)	Sora Sora (2)	Poopó (1)	Poopó (2)	Pazña (1)	Pazña (2)	Pazña (3)	Clase	Clase
										A	В
$CO_3^=$	mg/L	0	0	0	0	0	0	0	0		
HCO ₃ =	mg/L	131,19	164,24	167,29	78,11	74,44	111,06	97,63	112,28		
Cl	mg/L	8,711	17,446	17,497	24,001	24,856	10,384	10,812	10,468	250	300
NO ₃ -	mg/L	0,492	0	2,223	0	0	0	0	0	20	80
$SO_4^=$	mg/L	23,949	60,7666	60,849	40,867	41,207	55,638	52,376	56,315	300	400
Ca ⁺⁺	mg/L	11,882	42,523	42,81	21,222	20,782	29,516	24,938	29,792	200	300
Mg ⁺⁺	mg/L	5,395	11,064	11,066	7,568	7,502	10,812	9,103	10,97	100	100
Na ⁺	mg/L	11	32	32	22	23	18	19	18	200	200
K ⁺	mg/L	2,254	4,013	4,044	2,522	2,717	2,925	2,374	2,862	12	12
F ⁻	mg/L	0	0,591	0,705	0,27	0,32	0,26	0,27	0	0,6-1,7	0,6-1,7

Tabla 4a.- Resultados del análisis químico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Macha	Macha	Macha	Huanuni	Huanuni	Huanuni	Huanuni	Clase	Clase
		(1)	(2)	(3)	(1)	(2)	(3)	(4)	A	В
$CO_3^=$	mg/L	0	0	0	0	0	0	0		
HCO ₃ =	mg/L	132,2	10	154,18	70,87	74,75	75,37	68,09		
Cl ⁻	mg/L	18,81	23,02	18,24	5,702	5,801	5,698	5,543	250	300
NO ₃	mg/L	0	0	0	0	0	0	0	20	80
SO ₄ =	mg/L	90,21	112,03	86,63	33,668	34,109	33,764	33,738	300	400
Ca ⁺⁺	mg/L	40,66	49,57	39,10	16,805	18,773	18,069	17,574	200	300
Mg ⁺⁺	mg/L	16,29	18,77	16,03	8,057	6,205	8,288	7,831	100	100
Na ⁺	mg/L	35,37	40,71	34,51	10	10	10	10	200	200
K ⁺	mg/L	5,65	6,74	5,31	2,44	2,28	2,461	2,447	12	12

Tabla 4b.- Resultados del análisis químico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Anteque ra (1)	Anteque ra (2)	Anteque ra (3)	Anteque ra (4)	Toledo (1)	Toledo (2)	Toledo (3)	Clase A	Clase B
CO ₃ =	mg/L	0	0	0	0	0	0	0		
HCO ₃ ⁼	mg/L	98,85	112,28	102,51	93,97	185,50	213,57	168,42		
Cl ⁻	mg/L	5,601	8,348	4,778	5,562	38,38	37,80	41,06	250	300
NO ₃	mg/L	0	0	0,331	0	9,95	10,54	9,92	20	80
SO ₄ =	mg/L	30,464	29,376	30,798	30,385	89,80	88,05	101,68	300	400
Ca ⁺⁺	mg/L	18,852	18,372	18,93	18,609	67,53	67,43	68,90	200	300
Mg ⁺⁺	mg/L	9,953	8,049	10,538	10,071	6,30	6,30	6,34	100	100
Na ⁺	mg/L	11	16	10	11	40,93	40,89	41,08	200	200
K ⁺	mg/L	3,043	2,598	3,212	3,053	7,20	7,23	7,63	12	12
F-	mg/L	0,33	0	0,31	0,22	0,44	0	0	0,6-1,7	0,6-1,7

Tabla 4c.- Resultados del análisis químico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Achacol lo (1)	Achacol lo (2)	Clase A	Clase B
CO ₃ =	mg/L	0	34,81		
HCO ₃ ⁼	mg/L	181,84	10,93		
Cl ⁻	mg/L	408,09	1118,75	250	300
NO ₃ -	mg/L	0	0	20	80
SO ₄ ⁼	mg/L	92,45	634,80	300	400
Ca ⁺⁺	mg/L	22,60	159,59	200	300
Mg ⁺⁺	mg/L	6,95	47,85	100	100
Na ⁺	mg/L	312,93	692,84	200	200
K ⁺	mg/L	15,77	25,47	12	12
F-	mg/L	0	0	0,6-1,7	0,6-1,7

Tabla 4d.- Resultados del análisis químico de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Tototral	Sora	Sora	Poopó	Poopó	Pazña	Pazña	Pazña	Clase A	Clase B
		(1)	Sora (1)	Sora (2)	(1)	(2)	(1)	(2)	(3)		
Arsénico	μg/L	2,987	5,627	5,32	2,539	2,326	2,852	2,373	2,836	50	50
Cadmio	μg/L	2,61	0,054	0,024	0	0	0,02	0,031	0	5	5
Cromo	μg/L	0,017	1,666	1,697	0,072	0,071	0,012	0,044	0,005	50	50
Niquel	μg/L	0,112	0	0	0,116	0,005	0,051	0,124	0,072	50	50
Plomo	μg/L	0,025	3,883	0,018	0,215	0,015	0,188	0,045	0,013	50	50
Antimonio	μg/L	0,76	4,113	4,004	1,109	1,147	0,381	0,473	0,355	10	10
Selenio	μg/L	0,039	0,309	0,256	0	0,045	0,018	0,078	0,018	10	10
Aluminio	μg/L	17,763	2,111	2,215	3,595	1,332	2,879	1,534	1,917	200	500
Cobre	μg/L	0,026	0,008	0,008	0,02	0,018	0,022	0,054	0,022	50	1000
Manganeso	μg/L	0,259	0,212	0,427	0,256	0,419	0,156	17,51	0,128	500	1000

Tabla 5a.- Resultados del análisis químico por metales pesados de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Macha (1)	Macha (2)	Macha (3)	Huanuni (1)	Huanuni (2)	Huanuni (3)	Huanuni (4)	Clase A	Clase B
Arsénico	μg/L	2,218	2,072	2,343	0,73	0,812	2,166	0,429	50	50
Cadmio	μg/L	0,023	0,018	0,006	0,002	0,005	0,761	0,005	5	5
Cromo	μg/L	0,272	0,366	0,266	0,178	0,189	0,216	0,165	50	50
Niquel	μg/L	0,405	0	0	0	0	1,665	0	50	50
Plomo	μg/L	0,376	0	0	0	0	0,349	0	50	50
Antimonio	μg/L	1,676	0,854	1,925	1,513	1,598	1,987	2,072	10	10
Selenio	μg/L	0,177	0,306	0,148	0,076	0,076	0,133	0,101	10	10
Aluminio	μg/L	1,428	0,855	2,938	7,495	3,259	14,644	1,076	200	500
Cobre	μg/L	0,031	0,027	0,03	0,053	0,028	0,098	0,023	50	1000
Manganeso	μg/L	0,077	0,04	0,779	16,02	1,675	5,298	1,803	500	1000

Tabla 5b.- Resultados del análisis químico por metales pesados de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Anteq	Anteq	Anteq	Anteq	Toledo	Toledo	Toledo	Clase	Clase
Arsénico	μg/L	11,95	18,97	7,55	12,08	11,45	11,95	10,69	50	50
Cadmio	μg/L	0	0	0	0	0	0	0,026	5	5
Cromo	μg/L	0,042	0,021	0,113	0,075	0,438	0,583	0,347	50	50
Niquel	μg/L	0,139	0,009	0,12	0,107	0	0	0	50	50
Plomo	μg/L	0,939	0,023	0,011	0,019	0,187	0,102	0,053	50	50
Antimonio	μg/L	0,381	0,459	0,363	0,359	0,178	0,177	0,185	10	10
Selenio	μg/L	0,098	0,06	0,083	0,126	1,36	1,149	1,387	10	10
Aluminio	μg/L	1,243	1,205	1,571	1,925	0,62	0,968	1,855	200	500
Cobre	μg/L	0,027	0,025	0,025	0,024	0	0	0	50	1000
Manganeso	μg/L	0,269	0,666	1,131	0,217	0,043	0,12	8,343	500	1000

Tabla 5c.- Resultados del análisis químico por metales pesados de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Achacollo (1)	Achacollo (2)	Clase A	Clase B
Arsénico	μg/L	7,832	55,73	50	50
Cadmio	μg/L	0,05	0,042	5	5
Cromo	μg/L	0,473	0,057	50	50
Niquel	μg/L	4236,88	1,605	50	50
Plomo	μg/L	0,121	0,108	50	50
Antimonio	μg/L	0,339	3,452	10	10
Selenio	μg/L	1,328	0,002	10	10
Aluminio	μg/L	3,387	23,933	200	500
Cobre	μg/L	2,844	0,337	50	1000
Manganeso	μg/L	1,291	8,153	500	1000

Tabla 5d.- Resultados del análisis químico por metales pesados de las muestras de agua potable de comunidades mineras

Parámetro	Unidad	Sora Sora (1)	Poopó (1)	Pazña (1)	Macha (1)	Huanun i (1)	Huanun i (2)	Toledo (1)	Achacol lo (1)	Clase A	Clase B
Temperatura	°C	15,2	14,1	23,5	19,6	14,1	15,4	10,5	12,2		
pН		6,8	7,7	7,89	3,16	8,62	8,53	8,24	8,69	6 – 8,5	6 – 9
Conductividad	μS	1322	291,3	3829	2024	204,4	279,7	2045	1947		
ORP	mV	97	33	82	424	60	55	52	45		
TDS	μg/L	937,3	185,2	2760	1465	133,9	184,2	1424	1347	1000	1000
Oxígeno	μg/L	6	7	5,5	11	6	6	8	7	>80%sa	>70% sat

Tabla 6a.- Resultados del análisis físico de las muestras de agua de riego de comunidades mineras

Parámetro	Unidad	Sora	Poopó	Pazña	Macha	Huanuni	Huanuni	Toledo	Achac	Clase	Clase
		Sora (1)	(1)	(1)	(1)	(1)	(2)	(1)	ollo	A	В
CO ₃ =	μg/L	0	0	0	0	0	0	0	0		
HCO ₃ ⁼	μg/L	52,82	79,33	314,86	0	74,75	57,15	148,89	142,79		
Cl	μg/L	20,308	24,703	820,53	65,73	5,801	5,41	373,64	340,18	250	300
NO ₃	μg/L	3,067	0	2,443	5,90	,	0	0	0	20	80
SO ₄ =	μg/L	348,789	41,428	35,106	1091,51	34,109	71,241	279,30	262,35	300	400
Ca ⁺⁺	μg/L	73,185	21,162	62,674	122,16	18,773	23,169	80,59	75,28	200	300
Mg ⁺⁺	μg/L	32,62	7,735	10,916	47,68	8,205	12,469	30,38	29,20	100	100
Na ⁺	μg/L	36	23	550	64,13	10	11	247,91	225,19	200	200
K ⁺	μg/L	5,27	2,595	46,924	8,21	2,28	2,776	15,36	14,56	12	12

Tabla 6b.- Resultados del análisis químico de las muestras de agua de riego de comunidades mineras

Parámetro	Unidad	Sora Sora (1)	Poopó (1)	Pazña (1)	Macha (1)	Huanuni (1)	Huanuni (2)	Toledo (1)	Achacollo (1)	Clase A	Clase B
Arsénico	μg/L	0,705	2,326	4,024	186,781	0,939	0,848	83,35	101,1	50	50
Cadmio	μg/L	226,7	0	0,027	1885,4	0,002	0,009	0,01	0,019	5	5
Cromo	μg/L	0,232	0,071	0,166	30,893	0,186	0,133	0,076	0,133	50	50
Niquel	μg/L	258,2	0,005	832,284	677,9	0	0	1172,88	500,684	50	50
Plomo	μg/L	0	0,015	0	641,9	0	0	0,034	0,051	50	50
Antimonio	μg/L	0,946	1,147	7,693	18,157	1,487	2,373	1,441	1,612	10	10
Selenio	μg/L	1,053	0,045	0,005	7,08	0,098	0,1	0	0,093	10	10
Aluminio	μg/L	460,784	1,332	2,88	27218,8	2,168	1,913	6,266	4,91	200	500
Cobre	μg/L	6,976	0,018	0,631	264,9	0,031	0,023	0,761	0,344	50	1000
Manganeso	μg/L	3227,98	0,419	115,9	12989,9	0,675	1,292	5,947	0,919	500	1000

Tabla 6c.- Resultados del análisis físico de las muestras de agua de riego de comunidades mineras

4. CONCLUSIONES

Del estudio realizado es posible establecer las siguientes conclusiones:

a) Calidad de aguas usadas para el consumo humano

- Los análisis han mostrado que los pueblos situados en áreas mineras objeto de investigación (Machacamarca, Sora Sora, Huanuni, Poopo, Antequera, Totoral, Pazña), consumen agua de buena calidad; a excepción de Antequera, donde el agua de consumo es una mezcla de aguas de río y de una vertiente.
- De la misma manera, los análisis de aguas de los pueblos en zona no mineras (Toledo y Challacallo), que obtienen agua de un pozo profundo, presentan contaminación por arsénico y níquel. Observando la distribución de la contaminación es posible afirmar que en casi todos los casos se trata de un problema de origen natural, debido a la geología y no tienen carácter antropogénico.
- Los pueblos más afectados en cuanto a la calidad de aguas de uso potable son los que obtienen agua de acuíferos de profundidad y no los que se encuentran próximos a actividades mineras.

• Una contaminación por bromo se expande sobre una vasta superficie analizada, precisamente localizada desde Machacamarca, Sora Sora, Pazña, Toledo y Challacollo. Como este contaminante no es particularmente peligroso y también poco conocido, no es reportado en las tablas.

b) Calidad de aguas usadas para riego

- El agua de Toledo y Challacollo utilizada para el riego no es apta.
- Los ríos de Machacamarca y Sora Sora están también contaminados por las operaciones mineras del sector; por lo que, tampoco son aptas para el riego.

5. BIBLIOGRAFÍA

Zamora Echenique, G.; Navarro Torres, V.F.; Singh, R.; Hinojosa Carrasco, O. Environmental hazards associated with mining activities in Bolivian Poopó Lake. Revista Metalúrgica, 2012, 31, Carrera de Ingeniería Metalúrgica y Ciencia de Materiales, UTO.

Zamora G., Salas A., Hinojosa O. "Remediación ambiental como alternativa de desarrollo local". ISBN. 978-99954-32-92-8. Fundación PIEB (2010).