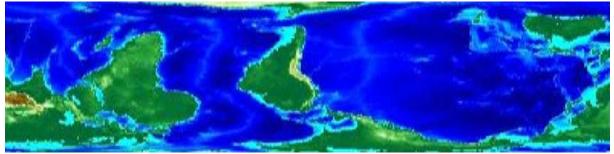
2ª OLIMPIADA BOLIVIANA de ASTRONOMÍA y ASTROFÍSICA

Bustos R. ¹, Raljevic M. ², Subieta V. ³, Mayta R. ³, Apaza R. ³, Espinoza W. ³, Brañez A. ³, Coca N. ⁴, Guaygua T. ⁵, Jemio C. ⁵, Portugal R. ⁶, Andrade M. ⁶, Mamani R. ⁷, Martinez L. ⁸, Justiniano I. ⁹, Payllo J. P. ¹⁰, Taquichiri M. ¹¹, Zalles R. ¹²

- ¹ Comité Olímpico Boliviano de Física, Astronomía y Astrofísica
- ² Sociedad Boliviana de Física (SOBOFI)
- ³ Universidad Mayor de San Andrés (UMSA), Carrera de Física, La Paz
- ⁴ Universidad Mayor, Real y Pontificia San Francisco Xavier de Chuquisaca (UMRPSFXCh), Sucre
- Universidad Técnica de Oruro (UTO), Facultad Nacional de Ingeniería (FNI), Oruro
- ⁶ Universidad Mayor de San Simón (UMSS), Carrera de Física, Cochabamba
- ⁷ Universidad Autónoma Tomas Frías (UATF), Carrera de Física, Potosí
- ⁸ Universidad Privada de Santa Cruz de la Sierra (UPSA), Santa Cruz
- ⁹ Colegio María Auxiliadora, Cobija, Pando
- ¹⁰ Colegio 12 de Agosto, Yacuiba, Tarija
- ¹¹ Universidad Autónoma Juan Misael Saracho (UAJMS), Departamento de Física, Tarija
- ¹² Observatorio Astronómico Nacional (OAN), Tarija

RESUMEN


La **2ª Olimpiada Boliviana de Astronomía y Astrofísica** (**2ª OBAA**) se llevó a cabo, con el éxito esperado, el 11 y 12 de Octubre de 2007 en la ciudad de Tarija, en las instalaciones del *departamento de Física* de la Universidad Autónoma Juan Misael Saracho (UAJMS) y en el Observatorio Astronómico Nacional (OAN). Se contó con la presencia de ocho delegaciones departamentales: Chuquisaca, Cochabamba, La Paz, Oruro, Pando, Potosí, Santa Cruz de la Sierra y Tarija. Se evaluó en las categorías de 3º y 4º de Secundaria. Los ganadores de 4º de Secundaria tienen como principal premio el ingreso libre y directo a las universidades comprometidas con el proyecto olímpico. La categoría de 3o de Secundaria tuvo dos modalidades de evaluación Teórica y Práctica, y los ganadores forman el equipo base que representará al país en la 2ª Olimpiada Internacional de Astronomía y Astrofísica (2th International Olympiad on Astronomy and Astrophysics: 2th IOAA) que se llevará a cabo en Agosto de 2008, Indonesia.

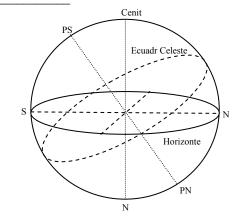
En la **2^a OBAA** se concentraron cerca a 80 personas entre estudiantes y profesores, quienes compartieron sus experiencias, costumbres y culturas dando una señal de unificación a la sociedad Boliviana.

Se presentan los exámenes resueltos de los exámenes simultáneos de selección a nivel nacional más el examen del evento nacional.

! Felicidades! A todos los jóvenes participantes y ganadores de las distintas etapas y categorías así como también a todos os establecimientos fiscales y particulares del área urbana y rural de todo el país, que participaron en esta nueva versión olímpica sobre astronomía y astrofísica. Todos ellos están dando un digno ejemplo a seguir por otros establecimientos, profesores y estudiantes contemporáneos así como también por todas las generaciones venideras.

Las páginas WEB son: http://www.fiumsa.edu.bo/olimpiada/ http://fcpnvirtual.umsa.bo/olimpiada/

2ª OLIMPIADA BOLIVIANA ASTRONOMÍA y ASTROFÍSICA


Solucionario del examen simultáneo de 3º de Secundaria

PREGUNTAS CONCEPTUALES

Escoge el inciso correcto. Si no está en las opciones coloca tu respuesta en el último inciso

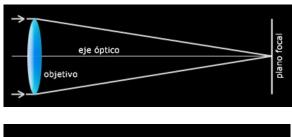
- 1. ¿Qué es la Bóveda Celeste?
 - a) Superficie Interior de una gran esfera donde están todos los astros
 - b) Una cámara o bóveda gigante de color celeste
- 2. ¿Qué es una constelación?
 - a) Es el conjunto de estrellas de todo el cielo
 - b) Es una agrupación de estrellas de una dada región en el cielo
- 3. ¿Alrededor de cuantas estrellas se pueden observar a simple vista en una noche despejada?
 - a) 100 1000
- 2000 2500
- c) 5000 100000
- **4.** ¿Cuanto vale la longitud geográfica de Bolivia?
 - a) <u>-4 [h]</u>
- b) 8 [h]
- c) 4 [h]
- d)_

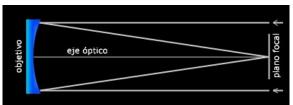
- **5.** En la siguiente figura identifique:
 - a) Horizonte local
 - b) Ecuador celeste
 - c) Cenit
 - d) Polo Celeste Norte (PN)
 - e) Paralelos: Circulos paralelos al Ecuador Celeste
 - f) Meridianos: Semicirculos que contienen a los dos polos

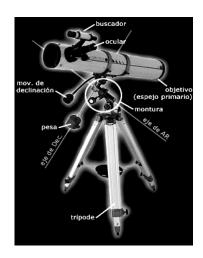
PREGUNTAS APLICADAS

1.- Realice un esquema de un instrumento astronómico (telescopio refractor o reflector). Indique las principales características.

Solución.-

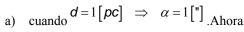

Un telescopio es básicamente un instrumento óptico que recoge cierta cantidad de luz y la concentra en un punto. La cantidad de luz colectada por el instrumento depende fundamentalmente de la apertura del mismo (el diámetro del objetivo). Para visualizar las imágenes se utilizan los oculares, los cuales se disponen en el punto donde la luz es concentrada por el objetivo, el plano focal. Son los oculares los que proporcionan los aumentos al telescopio: al intercambiar oculares se obtienen diferentes aumentos con el mismo instrumento.


La idea principal en un telescopio astronómico es la captación de la mayor cantidad de luz posible, necesaria para poder observar objetos de bajo brillo, así como para obtener imágenes nítidas y definidas, necesarias por ejemplo para observar detalles finos en planetas y separar estrellas dobles cerradas.


En el esquema se muestran las principales partes de un típico telescopio reflector newtoniano con montura ecuatorial alemana.

Existen dos grandes divisiones entre los telescopios, según el tipo de objetivo que utilizan: los reflectores y los refractores. Los reflectores se constituyen de un espejo principal (espejo primario u objetivo), el cual no es plano como los espejos convencionales, sino que fue provisto de cierta curvatura (idealmente parabólica) que le permite concentrar la luz en un punto.

Los telescopios refractores poseen como objetivo una lente (o serie de lentes, la cantidad varía según el diseño y calidad) que de forma análoga al funcionamiento de una lupa, concentran la luz en el plano focal. En astronomía se utilizan ambos tipos de telescopios, cada uno con sus propias ventajas.



2.- En vista de la inmensidad de las distancias en el cosmos resulta muy incomodo seguir usando kilómetros, por eso se usa el *pársec* que es la distancia que corresponde al paralaje heliocéntrico de 1" (segundo de arco). De acuerdo a la figura.Calcule:

- a) A cuanto equivale un pársec en UA
- b) A cuanto equivale un pársec en años luz.

Solución:

convirtamos 1 [''] a radianes:

$$\alpha = 1$$
 ["] .Ahora

$$\alpha = 1 ["] \times \left[\frac{1^{\circ}}{3600} \times \frac{2\pi \ rad}{360^{\circ}} \right] = 4,848136811 \times 10^{-6} \ [rad], \text{ y por tanto}$$

$$d = 1 [pc] = \frac{1}{\alpha} = \frac{1}{4,848136811 \times 10^{-6}} [ua.] = 206264,8062 [u.a.] \cong 206265 [u.a.]$$
Es decir:
$$1 [pc] = 206265 [u.a.]$$

b) Exprese un pársec en años luz. Solución.-

$$1[pc] \times \left[\frac{206265 \text{ u.a.}}{1 \text{ pc}} \times \frac{149597870,660 \text{ km}}{1 \text{ u.a.}} \times \frac{1 \text{ a.l.}}{9,4608 \times 10^{12} \text{ km}} \right] = 3,2615 [\text{a.l.}] \cong 3,262 [\text{a.l.}]$$

- **3.-** La Gran Mancha Roja (GMR) es un claro detalle de la atmósfera de Júpiter. Si este planeta realiza una rotación en aproximadamente 10 horas. Además, sabemos que estuvo sobre el meridiano central del planeta a las 18 horas Tiempo Universal (TU).
- a) Si son las 20 horas, hora local para Bolivia, ¿aun es posible observar la mancha?
- b) ¿Cuánto tiempo debemos esperar para observar a la GMR nuevamente?

Solución:

a) Si son las 18:00 UTC corresponde a las 14:00 hora local (4 horas menos).

En vista que la mancha roja está en el meridiano central de Júpiter, le tomará 2 horas y treinta minutos ocultarse en el borde del planeta, y en otras 5 horas saldrá por el otro borde. Por tanto entre las 16:30 y las 21:30 la mancha no será visible.

b) la mancha reaparece a las 21:30

2ª OLIMPIADA BOLIVIANA ASTRONOMÍA y ASTROFÍSICA Solucionario del examen simultáneo de 4º de Secundaria

Profundidad, 50000, Galaxia, Óptica, Estructura, Costado, 4000, Galaxias, Frente, un millón, 8500.

PREGUNTAS APLICADAS

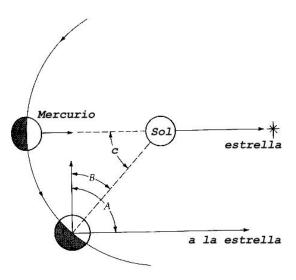
1.- Al tomar fotografías estelares, el tiempo de exposición depende del brillo de un objeto y de su distancia. Si para un objeto luminoso con 100 W de potencia que se encuentra a 20 m se requieren de 2 segundos para registrar una imagen, cuanto tiempo será necesario si este objeto se encuentra a 60 m?

Solución:

La intensidad luminosa disminuye con el inverso del cuadrado de la distancia a la fuente, si la distancia se triplica, la intensidad será 1/9 de la original. Por tanto se necesitaran un tiempo de exposición igual a 9 veces el tiempo original.

Con lo que se requieren 18 segundos de exposición.

- **2.-** Una estrella emite una radiación cuyo máximo corresponde a la frecuencia de $v = 1x10^{16}$ [Hz]. Recordemos que para la radiación de un cuerpo negro la longitud de onda máxima esta relacionada con la temperatura del cuerpo mediante la constante del desplazamiento de Wien, dada por: $b = 2.897x10^{-3}$ [m K]
 - a) Calcula la temperatura del cuerpo que emita esa radiación.


Solución:

Primero calculemos la longitud de onda de la relación: $\lambda = c/v$, donde c es la velocidad de la Luz, dada por $3x10^8$ [m/s] Entonces $\lambda = 3x10^{-8}$ [m].

Ahora de la ley del desplazamiento de Wien:

$$\lambda_{Max}T = b \implies T = \frac{b}{\lambda_{Max}} = \frac{2,897 \times 10^{-3} [m^{\circ} K]}{3 \times 10^{-8} [m]} = 96566,7 [{}^{\circ} K]$$

3.- a) Sabiendo que el periodo de revolución de Mercurio alrededor del Sol es 88 días terrestres. Su periodo de rotación sidérea es 58.7 días terrestres. Calcule el periodo sinódico (día Solar) de Mercurio. La gráfica adjunta es una representación exagerada del resultado de estos movimientos en un día Terrestre. Con A el ángulo que rotó respecto a una estrella, B el ángulo que rotó con respecto al Sol y C el ángulo que se desplazo en su órbita.

Solución:

Llamemos P al periodo sidéreo, S al sinódico y T al de revolución

De la gráfica es claro que A-B = C.....(1)

Si A es la rotación con respecto a las estrellas en un día Terrestre A = 360°/P

Si B es la rotación con respecto al Sol B = 360° /S

Si C es la fracción que se ha desplazado de su órbita alrededor del Sol C = 360°/T

Entonces de (1)

 $360^{\circ}/P-360^{\circ}/S = 360^{\circ}/T$ o lo que es lo mismo 1/S = 1/P-1/T

Colocando números se ontiene finalmente que

S = 176 días terrestres

2ª OLIMPIADA BOLIVIANA ASTRONOMÍA y ASTROFÍSICA Solucionario del Examen Nacional de 3º de Secundaria

PREGUNTAS CONCEPTUALES

Completa, o responde, o calcula, o encierra en un circulo.

1.

a) Realice un gráfico o explique las zonas en la estructura solar y los procesos que en ellas se desarrollan. La estructura del Sol está formada por las siguientes regiones:

- . La Corona
- . La Cromosfera
- . La Fotosfera
- . La Zona Convectiva
- . La Zona Radiactiva
- . El Núcleo

La **Corona** se extiende por cerca de dos radios solares y es visible durante los eclipses solares. Su temperatura asciende a un millón de grados Kelvin: 106[° K] y se origina del transporte de energía por corrientes generadas por campos magnéticos variables. Este fenómeno es explicado por la Ley de Faraday, Michael Faraday (1791-1867), que es una de las ecuaciones fundamentales del electromagnetismo y que indica lo siguiente: *un campo magnético variable [Teslas] induce una fuerza electromotriz [Voltios] que a su vez genera una corriente [Amperios]*, la misma puede llevar una cantidad de energía [Joules] por unidad de volumen [metros³]

De la corona emana el **viento solar**, que es un flujo constante de partículas que sale hacia el espacio, en su mayoría protones y neutrones. El flujo total que sale del Sol es de aproximadamente 100 mil millones de partículas por cm2 por segundo, es decir, 1011[partículas / cm² s]. La parte del viento solar que llega a la Tierra es aproximadamente igual a 7 [partículas / cm²s]. La velocidad de estas partículas es de unos 400 [km/s].

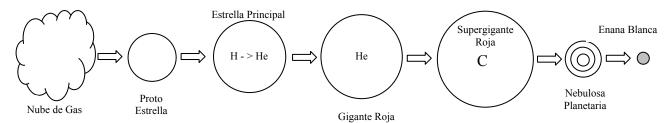
La **Cromosfera** es la parte superior de la atmósfera solar que está encima de la fotosfera. Es de un color violeta y solo es visible durante los breves instantes que dura un eclipse de Sol, cuando la luz esconde el disco de la fotosfera. Tiene un espesor entre 7000 [km] a 10000 [km] y una temperatura de 15×103[° K].

La **Fotosfera** tiene la apariencia de la superficie de un líquido en ebullición llena de manchas en movimiento, conocidas como las Manchas Solares, que son regiones irregulares que aparecen más oscuras que la fotosfera circundante.

Las Manchas Solares se agrupan en cantidades que dependen de la época del año. Algunas pueden ser más grandes que nuestro planeta. La temperatura de la fotosfera es de unos 5800 [K] mientras que de las manchas solares es de unos 3800 [K], es decir, debido a que es una mancha oscura su temperatura es menor.

La **Zona Convectiva** es una franja en la que la energía se transforma por convección de radiación. Ocupa aproximadamente el 15% del radio del Sol.

La **Zona Radiactiva** es la zona o región donde la energía fluye por radiación proveniente de los procesos termonucleares que se originan en el núcleo.


El **Núcleo** es la región central del Sol, absolutamente inaccesible a la observación. Es la región donde se producen las reacciones termo-nucleares, principal mecanismo de producción de la energía solar. Donde 4 protones son fundidos en un núcleo de Helio, con una liberación de energía en el proceso. El Sol tiene energía suficiente como para alimentar estas reacciones durante billones de años.

b) Estas galaxias son muy activas en la formación de estrellas, ellas son Galaxias:

Espirales Elípticas Irregulares

Las galaxias irregulares son llamadas así por que no muestran una estructura definida. Algunas de ellas poseen gran cantidad de material interestelar así que es posible que tengan formación estelar activa. La mayor parte de estas galaxias son pequeñas y débiles.

c) ¿Cuales son las principales etapas en la vida de una estrella típica (tipo solar)?

Esquema de evolución estelar para una estrella tipo solar. Una nube de gas se contrajo, formando una proto - estrella. Cuando la temperatura del núcleo era suficientemente alta se inician las reacciones nucleares, la proto - estrella se transforma en una estrella principal, transformándose dentro del núcleo el hidrogeno en helio. Cuando esas estrellas transforman, mediante procesos nucleares, el helio en carbono, estas pasan de ser gigantes. Cuando los procesos nucleares transforman la totalidad del helio en carbono, estas estrellas se transforman en Súper gigantes Rojas para luego volverse nebulosas planetarias y terminar sus ciclo como enanas blancas.

d) ¿Las estrellas que están en un mismo círculo vertical tienen igual acimut? Un círculo vertical es cualquier semicírculo máximo de la esfera celeste que contiene a la vertical del lugar y comienzan en el Zenith y finalizan en el Nadir. El Acimuth es el ángulo medido sobre el horizonte, en el sentido horario (NESO), con origen en el Sur y fin en el círculo vertical del astro. En consecuencia la respuesta es positiva. e) ¿Es la declinación del Sol una constante? ¿Por qué? Debido al movimiento de traslación de la Tierra en torno al Sol, el Sol aparentemente se mueve, a lo largo del año, entre las estrellas describiendo una trayectoria entre las estrellas conocida como la *eclíptica*. La eclíptica es un circulo máximo en la esfera celeste que tiene una inclinación de +23°26` en relación al ecuador celeste. Es decir la declinación (δ) de nuestra estrella a lo largo de un año varia en los siguientes limites: desde +23°26` hasta -23°26` pasando dos veces al año por el cero.

PREGUNTAS APLICADAS

1. La 3ª Ley de Kepler en su forma exacta se expresa como $T^2 = \frac{4\pi^2}{GM}a^3$. Calcule el valor de la constante de gravitación universal. Use los siguientes datos: $1 UA = 149,598 \times 10^9 [m]$, $M_{Sol} = 1,98 \times 10^{30} [kg]$, $T = 31536 \times 10^3 [s]$

Solución.-

Es posible escribir:
$$G = \frac{4\pi^2}{MT^2}a^3$$
, de donde: $G = 6,7 \times 10^{-11} \left[\frac{m^3}{kg\ s^2}\right]$

2. Si Saturno, planeta gaseoso, tuviera la densidad de la Tierra, ¿Cuál sería el valor de la aceleración de la gravedad en este planeta? Datos: $R_T = 6378,140 \times 10^3 \left[m\right], \quad M_T = 5,974 \times 10^{24} \left[kg\right],$ $R_{Saturno} = 60000 \times 10^3 \left[m\right], \quad M_{Saturno} = 5,69 \times 10^{26} \left[kg\right]$

Solución

De la magnitud de la fuerza de la segunda Ley de Newton:

$$F = ma = mg \tag{1}$$

y la magnitud de la fuerza de la Ley de la Gravitación Universal:

$$F_{\rm G} = G \frac{M_{\rm T} m}{R_{\rm T}^2} \tag{2}$$

Igualando ambas fuerzas, obtendremos

$$g = G \frac{M_T}{R_T^2} \tag{3}$$

La densidad esta dada por la definición Masa / Volumen, es decir:

$$\delta = \frac{M_T}{\frac{4}{3}\pi R_T^3}, \text{ de donde, } M_T = \frac{4}{3}\pi \delta R_T^3$$
 (4)

Reemplazando la ecuación (4) en la ecuación (3):

$$g = \frac{4}{3}\pi G \delta R_T, \text{ de donde}, \quad \delta_T = \frac{g_T}{\frac{4}{3}\pi R_T G}$$
 (5)

Cambiando los subíndices es posible obtener la densidad de Saturno:

$$\delta_{\rm S} = \frac{g_{\rm S}}{\frac{4}{3}\pi R_{\rm S} G} \tag{6}$$

Igualando (5) con (6), que es la condición del problema, se tiene: $g_S = g_T \frac{R_S}{R_T}$

Reemplazando datos, y realizando cálculos obtenemos: $g_s = 92.3 \left[\frac{m}{s^2} \right]$

3. La *Supernova 1987a* en la *Gran Nube de Magallanes*, explotó hace 170000 años, ¿A cuantos parsecs se encuentra de nosotros?

La luz se mueve con movimiento rectilíneo uniforme, de la ecuación: $c = \frac{D}{T} \rightarrow D = c T$

El tiempo dado es: T = 170000 años $\approx 5.36112 \times 10^{12}$ s

El valor exacto de la velocidad de la luz es: c = 299792458 [m/s]

Entonces

 $D = 299792458 \ [m/s] \times 5.36112 \times 10^{12} \ [s]$, de donde, $D = 1,607223342 \times 10^{21} \ [m]$ En parsecs:

$$D = 1,607223342 \times 10^{21} [m] \cdot \frac{1 [pc]}{3.0857 \times 10^{16} [m]} = 52086,2 [pc]$$

- 4. Explique en términos de la Ascensión Recta (α) y la declinación (δ) del Sol el comienzo de las estaciones.
 - Punto de Solsticio de Invierno (Hemisferio Sur), se da cuando la ascensión recta (α) será igual a 90[°] = 6
 [h] y la declinación (δ) alcanza el valor máximo de +23°26′, luego δ comienza a disminuir mientras que α continua creciendo.
 - Punto del Equinoccio de Primavera (Hemisferio Sur), α será igual a 180[°] = 12 [h] y δ = 0°.
 - Punto de Solsticio de Verano, α será igual a 270[°] = 18 [h] y δ = -23°26′.
 - Punto de Equinoccio de Otoño, α será igual a 360[°] = 24 [h] y δ = 0°

Ver simulación en el sitio: http://www.fiumsa.edu.bo/olimpiada/

2ª OLIMPIADA BOLIVIANA ASTRONOMÍA y ASTROFÍSICA Solucionario del Examen Nacional de 4º de Secundaria

PREGUNTAS CONCEPTUALES (Completa o responde o calcula)

- 1. ¿Qué entiendes por espectro electromagnético? Solución.-
 - Se denomina **espectro electromagnético** a la distribución energética del conjunto de las <u>ondas</u> electromagnéticas. El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo aunque formalmente el espectro electromagnético es infinito y continuo.
- 2. Haz una hipótesis de, ¿Por qué la temperatura de Venus es mayor que la de Mercurio si Venus está más alejado del Sol? Solución.-
 - La enorme cantidad de gases, como el CO₂, en la atmósfera de Venus provoca un fuerte efecto invernadero que eleva la temperatura de la superficie del planeta hasta unos 460 °C en las regiones menos elevadas cerca del ecuador. Esto hace que Venus sea más caliente aún que Mercurio, a pesar de hallarse a más del doble de la distancia del Sol que éste y de recibir sólo el 25% de su radiación solar (2.613,9 W/m² en la atmósfera superior y 1.071,1 W/m² en la superficie).
- 3. Calcula el valor de la declinación para las estrellas circumpolares observadas desde la ciudad Boliviana cuya latitud, máxima en el país, es igual a 22º S. ¿Cuál sería esta ciudad? Solución.-
 - La ciudad es Tarija, y el valor de la declinación es el mismo valor de la declinación, igual a 22º S.
- 4. ¿Es cierto que el diagrama Herzsprung Russell (HR) nos indica la posición de las estrellas en el cosmos?

 No, el diagrama de HR indica el valor de la temperatura, la luminosidad, la magnitud y la clase espectral de las estrellas, no su posición en el cosmos (ver http://www.fiumsa.edu.bo/olimpiada/)

PREGUNTAS APLICADAS

2.

1. Dada la ecuación: $v_{Galaxias} = H_0 \Delta r_{Galaxias}$, donde $[\Delta r_{Galaxias}] = [Mpc]$, $[v_{Galaxias}] = [km/s]$, exprese la constante de Hubble con sus unidades correctas. Solución.-

De la ecuación dada obtenemos la constante de Hubble: $H_0 = \frac{V_{Galaxias}}{\Delta T_{Galaxias}}$

De donde las unidades para la constante serán: $[H_0] = \left[\frac{km}{s Mpc}\right]$

El valor actual para la constante de Hubble es de $100 \left[\frac{km}{s \; Mpc} \right]$ y es un parámetro para medir la velocidad a la que se alejan las galaxias unas de otras.

a. Calcule el flujo saliente total de una estrella de radio igual al del Sol, pero cuya luminosidad es menor, igual a $L = 12 \cdot 10^{23}$ [W]. Datos: $R_{Sol} = 696000$ [km]. Solución.-

Es sabido que para una estrella de radio R y, en consecuencia, superficie $S=4\pi\,R^2$, el flujo saliente por toda su superficie está definido por: $\phi(R)=\frac{L}{S}=\frac{L}{4\pi R^2}\left[\frac{W}{m^2}\right]$. Por lo tanto el flujo buscado será:

$$\phi(R) = \frac{L}{4\pi R^2} \left[\frac{W}{m^2} \right] = \frac{12 \cdot 10^{23}}{4(3,14159)(6,96 \cdot 10^9)^2} = 1971,3 \left[\frac{W}{m^2} \right]$$

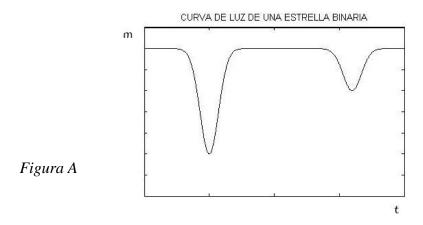
b. Calcule el flujo detectado de la misma estrella, si está a una distancia de nosotros r=5 [pc]. Solución. Si se busca calcular el flujo a una cierta distancia r de la estrella fuente, éste será: $\phi(r) = \frac{L}{4\pi r^2} \left[\frac{W}{m^2} \right] \text{ y recordando que 1 } \left[pc \right] = 3,0857 \cdot 10^{16} \left[m \right], \text{ se tendrá finalmente que:}$

$$\phi(r) = \frac{L}{4\pi r^2} \left[\frac{W}{m^2} \right] = \frac{12 \cdot 10^{23} \left[W \right]}{4(3,14159)(5 \cdot 3,0857 \cdot 10^{16} \left[m \right])^2} \approx 4 \cdot 10^{-12} \left[\frac{W}{m^2} \right]$$

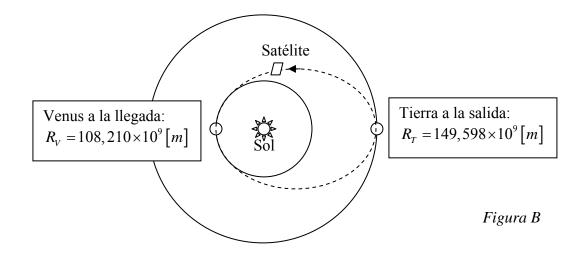
c. Calcule la magnitud estelar de la estrella, sabiendo que la magnitud del Sol es igual a -26.8^m y su flujo en la Tierra es igual a $\phi_{Sol}=1360\left[W/m^2\right]$. Solución.-

La magnitud estelar, m, es la cantidad que nos permite cuantificar el flujo proveniente de las estrellas. Recordando que en 1856 N. Pogson verifico que la percepción por el ojo humano del brillo de una fuente luminosa se puede expresar mediante una escala logarítmica, tal que el flujo ϕ_1 de una estrella de magnitud estelar igual a 1^m es 100 veces más intensa que el flujo ϕ_2 de una estrella de magnitud estelar

igual a 6^m , es decir, $\frac{\phi_1}{\phi_2} = 2.5119^{-(m_1 - m_2)}$. Tal que si $m_1 = 1$ y $m_2 = 6$, entonces $\phi_1 = 100 \phi_2$.


Despejano,
$$m_1 = m_2 - 2.5 \log \left(\frac{\phi_1}{\phi_2}\right)$$
, o, $m_{Estrella} = m_{Sol} - 2.5 \log \left(\frac{\phi_{Estrella}}{\phi_{Sol}}\right) = +9.52^m$

3. (Magnitudes estelares)


Hiparco en el siglo segundo A.C. dividió a las estrellas visibles en seis clases de acuerdo a su brillo aparente. Norman Pogson en 1856 definió una nueva clase de brillo o magnitud en términos de la densidad de flujo observado F [W/m²]. Así la magnitud θ corresponde al flujo predefinido θ . Las demás magnitudes se definen por la ecuación:

$$m = -2.5\log\frac{F}{F_0}$$

- a) (*Magnitud de un sistema binario*) Si las magnitudes de las componentes de un sistema binario, son 1 y 2, respectivamente, calcula la magnitud total observada de la estrella binaria. (Ayuda: ten en cuenta que las magnitudes estelares son magnitudes logarítmicas, es decir, no se suman directamente)
- b) (*Variación del Brillo de un sistema binario*) La *figura A* magnitud versus tiempo representa la curva de luz para un "periodo" observado del movimiento de un sistema binario de estrellas. En esta binaria las dos componentes tienen el mismo radio. Describa cada etapa del gráfico y deduzca las características de las estrellas indicando las posiciones de las estrellas en cada etapa así como también la orientación del plano de la órbita del sistema.

4. (*Misión a Venus*) La forma más sencilla de realizar un viaje entre dos planetas del Sistema Solar es utilizando lo que se conoce como órbita de mínima, que es, desde el punto de vista energético, la más económica. En dicha transferencia el satélite recorre, en el ambiente interplanetario, un camino que es una semi-elipse, con el Sol en uno de sus focos, entre el planeta interior en la posición más cercana al Sol (perihelio) y el planeta exterior en el punto más apartado de esa cónica (afelio) (ver *figura B*).

En nuestro caso, el de una supuesta misión satelital a Venus, se puede suponer que las órbitas de los planetas involucrados están en el mismo plano y pueden ser consideradas círculos perfectos. Además supón que la posición de Venus, a la llegada de la nave, es diametralmente opuesta a la posición en la que estaba la Tierra en el instante de la partida del satélite.

a. Determina el tiempo de vuelo de una misión desde la Tierra al planeta Venus en una trayectoria de orbita mínima, considerando que el movimiento del satélite cumple con las mismas leyes que cualquier astro del sistema solar y despreciando las perturbaciones gravitatorias de todos los planetas. Solución.-

Para el satélite en orbita elíptica:

Radio del perihelio:
$$R_P = R_{Venus} = 108,21 \times 10^6 \, Km$$

Radio del afelio:
$$R_a = R_{Tierra} = 149,59 \times 10^6 \, Km$$

Semieje mayor:
$$a_{sat} = \frac{R_a + R_p}{2} = 128,90 \times 10^6 \, \text{Km}$$

$$\left(\frac{T_{\text{sat}}}{T_{\text{Tierra}}}\right)^2 = \left(\frac{a_{\text{sat}}}{a_{\text{Tierra}}}\right)^3 = \left(\frac{128,90}{149,59}\right)^3 \rightarrow T_{\text{sat}} \cong 292 \text{ días, utilizando } T_{\text{Tierra}} = 365 \text{ días}$$

Por lo tanto,
$$T_{transf} = \frac{T_{sat}}{2} = 146$$
 días.

Con el objeto de suministrar energía a la nave se instalan 2 paneles solares idénticos para aprovechar la potencia que irradia el Sol, que es de $3,846\times10^{26} [W]$. Las celdas fotovoltaicas, de arseniuro de galio, que convierten la luz del Sol en electricidad, absorben solamente el 35% de la energía total para suministrar energía a la nave espacial.

b. Determina el área mínima que debe tener cada panel solar para poder hacer su viaje a Venus. Supón que tras abandonar la atmósfera terrestre, la nave necesita una potencia mínima de $2 \times 10^3 [W]$ para el correcto funcionamiento de su instrumental y que los paneles solares siempre se orientan perpendiculares a la luz solar. Solución.-

Sea

$$P_S = 4 \times 10^{23}$$
 KW la potencia irradiada por el Sol.
 $P_N = 2$ KW la potencia que necesita la nave para funcionar.

Como la potencia que entrega el sol por unidad de área es mayor mientras más del Sol estemos, nos interesa el área de los paneles a la distancia Sol – Tierra. A esa distancia, la potencia entregada por el sol por unidad de área es:

$$\frac{P_{\rm S}}{4\pi R_{\rm s}^2}$$

Si a es el área de cada uno de los paneles, entonces la potencia colectada es:

$$2A \frac{P_S}{4\pi R_S^2}$$

Como solo se aprovecha el 35% de eso tenemos que:

$$0.35 \left(2A \frac{P_S}{4\pi R_S^2}\right) = 2KW$$

Resultando

$$A = 2008 \times 10^{-9} \, \text{Km}^2 \cong 2m^2$$