Autor: Dr. Cs. Gustavo Ruiz Aranibar¹

Resumen

La presente investigación presenta los resultados preliminares y finales de la clasificación, aplicada a la minería, teniéndose muestras analizadas, cuyos contenidos corresponden a 13 metales, teniéndose tres grupos de acuerdo al lugar de origen de cada muestra, y reagrupados hasta obtener los grupos con las muestras correspondientes.

Palabras clave: análisis discriminante, función discriminante, multivariante, distancia de Mahalanobis, variables, matriz de varianza-covarianza, centroide.

1. Introducción

El Análisis Multivariante (AM) es el conjunto de métodos estadísticos cuya finalidad es analizar simultáneamente conjuntos de datos multivariantes en el sentido de que hay varias variables medidas para cada individuo ú objeto estudiado. Su razón de ser, radica en un mejor entendimiento del fenómeno objeto de estudio, obteniendo información que con los métodos estadísticos univariantes y bivariantes no se pueden conseguir. El AM, estudia, analiza, representa e interpreta los datos que resulten de observar un número p > 1 de variables estadísticas sobre una muestra de n individuos.

2. Conocimientos previos de matemáticas y estadística

1. Matriz de datos
$$X = x_{ij} = \begin{bmatrix} x_{11} & \dots & \dots & x_{1n} \\ x_{21} & \dots & \dots & x_{2n} \\ \dots & \dots & \dots \\ x_{p1} & \dots & \dots & x_{pn} \end{bmatrix}$$

2. Suma de columnas
$$X = x_j = \sum_{i=1}^p x_{ij}$$

3. Matriz de suma de cuadrados y productos
$$Z = z_{i,j} = \sum_{i=1}^{p} x_{i,l} * x_{l,j}$$

4. Vector de promedios
$$\bar{X} = \bar{x}_j = \left(\sum_{i=1}^p x_{ij}/n\right) = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \dots \\ \bar{x}_n \end{bmatrix}$$

5. Matriz de suma de cuadrados y suma de productos de desviaciones ²

$$A = a_{ii} = SCE_i = \sum_{\alpha=1}^{n} (x_{i\alpha} - \bar{x}_i)^2 = \sum_{\alpha=1}^{n} x_{i\alpha}^2 - \frac{1}{n} \left(\sum_{\alpha=1}^{n} x_{i\alpha}\right)^2$$

² En ingles: sums of squares and products of desviates. En francés: sommes des carrès et des produits des ècarts

¹ Se agradece a la UAGRM por la beca otorgada con fondos del IDH, para cursar y culminar exitosamente el Doctorado en Ciencias en Educación Superior. Especializado en Estadística. Profesor de Estadística, Matemáticas y Computación

$$A = a_{ij} = SPE_{ij} = \sum_{\alpha=1}^{n} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j) = \sum_{\alpha=1}^{n} x_{i\alpha}x_{j\alpha} - \frac{1}{n} \left(\sum_{\alpha=1}^{n} x_{i\alpha}\right) \left(\sum_{\alpha=1}^{n} x_{j\alpha}\right)$$

6. Covarianza
$$\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{y}_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \right) \left(\sum_{i=1}^{n} \mathbf{y}_{i} \right) \right)$$

7. Matriz de varianzas y covarianzas²
$$S = s_{ij} = \begin{bmatrix} s_{11} \dots s_{1m} \\ s_{21} \dots s_{2m} \\ \vdots \\ s_{n1} \dots s_{nm} \end{bmatrix} = \begin{bmatrix} a_{11}/n \dots a_{1m}/n \\ a_{21}/n \dots a_{2m}/n \\ \vdots \\ a_{n1}/n \dots a_{nm}/n \end{bmatrix}$$

- 8. Vector de desviaciones estándar $D = d_i = [\sqrt{a_{ii}}]$
- 9. Matriz de coeficientes de correlación $R = r_{ij} = [s_{ij}/(d_i * d_j)] = \begin{bmatrix} 1 & r_{12} & \dots & \dots & s_{1p} \\ r_{21} & \dots & \dots & r_{2p} \\ \dots & \dots & \dots & r_{p1} \\ r_{p1} & r_{p2} & \dots & \dots & 1 \end{bmatrix}$
- 10. Matriz inversa. Existen diferentes métodos para encontrar la inversa de una matriz, estando entre ellas los métodos de: Gauss-Jordán, Monte Carlo, partición de matrices, o hallando el cociente de la matriz adjunta por su determinante: $S^{-1} = \frac{Adj S}{|S|}$
- 11. Probabilidad total condicional

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A|H_i)$$

12. Fórmula de Bayes

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{P(A)}$$

3. Matriz de correlaciones

Cuando existen altas correlaciones entre las p variables discriminantes, el investigador debe cuidarse de interpretaciones erróneas de los coeficientes de las funciones discriminantes, porque las variables relacionadas están compartiendo el peso en la función. En investigaciones se recomienda eliminar variables altamente correlacionadas, ya que la presencia de éstas puede generar ciertas limitaciones en el análisis.

4. Descripción del análisis discriminante (AD)

El AD, fue propuesto por R. Fisher, cuya finalidad es analizar si existen diferencias significativas entre grupos de objetos respecto a un conjunto de variables medidas sobre los mismos, en el caso de que existan, explicar en qué sentido se dan y proporcionar procedimientos de clasificación sistemática de nuevas observaciones de origen desconocido en uno de los grupos analizados, es una técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables discriminadoras.

El AD, permite describir, seleccionar las variables que más influyen en el problema, construir una función a partir de estas variables y predecir en qué grupo se clasifica un nuevo individuo, el cual ha sido evaluado

2 En ingles: variance-covariance matrix, dispersión matrix. En francés: matrice des variances et covariances ou matrice de dispersion

en dicha función. Se ve a este procedimiento como un modelo de predicción de una variable respuesta categórica (variable grupo) a partir de p variables explicativas generalmente continuas (variables clasificatorias). Los pasos a seguir para llevar a cabo un AD, comprenden:

- Plantear el problema a resolver por el AD.
- Analizar si existen diferencias significativas entre los grupos.
- Establecer el número y composición de las dimensiones de discriminación entre los grupos analizados.
- Determinar qué variables clasificadoras explican la mayor parte de las diferencias observadas.
- Construir procedimientos sistemáticos de clasificación de objetos de procedencia desconocida en los grupos analizados.
- Evaluar la significación estadística y práctica de los resultados obtenidos en el proceso de clasificación.

Como cualquier otra técnica estadística, la aplicación del AD ha de ir precedida de una comprobación de los supuestos asumidos por el modelo, el AD se apoya en los siguientes supuestos: a) Normalidad multivariante b) Igualdad de matrices de varianza-covarianza c) Linealidad d) Ausencia de multicolinealidad y e) Singularidad.

5. Análisis discriminante lineal (ADL)

En el AD, el punto de partida es un conjunto de objetos clasificados en dos o más grupos, de estos objetos, se conocen sus variables atributo. Al reconocer de antemano la existencia de estos grupos, parece lógico pensar que existen variables cuyo valor numérico determina la pertenencia a uno u otro grupo. Los objetivos del AD son: a) La identificación de variables atributo que mejor discriminen entre los grupos y la evaluación del poder discriminante de cada una de ellas. b) Asignar, con un cierto grado de riesgo, un objeto del que no se conoce su clasificación y del que se conocen las variables atributo.

Como técnica de análisis de dependencia, el ADL permite obtener un modelo lineal de causalidad en el cual la variable dependiente puede ser métrica o categórica, y las variables independientes son métricas, continuas y determinan a qué grupo pertenecen los objetos. Se trata de encontrar relaciones lineales entre las variables que mejor discriminen a los grupos iníciales de objetos. Además, se trata de definir una regla de decisión que asigne un nuevo objeto a uno de los grupos prefijados.

Entre las ventajas del ADL se tiene:

- La técnica ADL es fácil de aplicar especialmente si se tiene el programa informático.
- Las probabilidades de pertenencia a un grupo dado son determinadas por el programa.
- Está disponible en muchos programas estadísticos.

Entre las desventajas del ADL se mencionan:

- Las suposiciones de normalidad e igualdad de varianzas no siempre se cumplen en las variables del modelo.
- La clasificación de nuevas observaciones no es muy eficiente a medida que se incrementa el número de variables del modelo.
- Seleccionar las variables antes de aplicar el ADL.
- Requiere que se especifiquen los grupos del conjunto de entrenamiento del modelo con clases prefijadas.

6. Análisis discriminante clásico

El AD de Fisher tiene por principio definir, para dos poblaciones y p variables, una función lineal:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$
$$y = \beta_0 + \beta x$$

Permite afectar a una de las dos poblaciones, todo individuo caracterizado por un valor negativo de *y*, y a la otra población todo individuo por un valor positivo de *y*, de todas maneras el riesgo de clasificación errónea³, (clasificación de un individuo perteneciente a una población, dentro de la otra población) sea lo más pequeña posible.

De una manera general, la investigación de la función discriminante (FD) se realiza suponiendo que las dos poblaciones poseen distribuciones normales a p dimensiones, de iguales varianzas y covarianzas, y que los parámetros de esas poblaciones son conocidas o pueden ser estimadas a partir de muestras suficientemente grandes. En estas condiciones se puede demostrar que la función asegura el riesgo de clasificación erróneo mínimo, sea:

$$y = b_0 + bx$$

$$y = [x - (\bar{x}_1 + \bar{x}_2)/2] \hat{\Sigma}^{-1} (\bar{x}_1 + \bar{x}_2)$$

$$y = (n_1 + n_2 - 2)[x - (\bar{x}_1 + \bar{x}_2)/2] (A_1 + A_2)^{-1} (\bar{x}_1 + \bar{x}_2)$$

donde:

Los valores promedio de la variable y, relativos a las dos muestras son en consecuencia:

$$\bar{y}_1 = (\bar{x}_1 + \bar{x}_2) \hat{\Sigma}^{-1} (\bar{x}_1 + \bar{x}_2)/2$$
 $\bar{y}_2 = -\bar{y}_1$

La diferencia existente entre los dos promedios:

$$\bar{y}_1 - \bar{y}_2 = (\bar{x}_1 + \bar{x}_2) \, \widehat{\Sigma}^{-1} (\bar{x}_1 + \bar{x}_2)$$

No es otro en valor absoluto, que el cuadrado de la distancia generalizada existente, en el sentido de Mahalanobis, entre las dos muestra:

$$|\bar{y}_1 - \bar{y}_2| = D^2$$

Por otra parte se demuestra, siempre en las mismas condiciones, que los valores de y poseen para cada población una distribución aproximadamente normal, donde la varianza puede ser estimada por: $|\bar{y}_1 - \bar{y}_2|$ o D^2 .

Esta probabilidad es en efecto aquella de observar un valor negativo de y para un individuo de la población de promedio positivo $(D^2)/2$ o un valor positivo de y para un individuo de la población de promedio negativo $(-D^2)/2$. En consecuencia la probabilidad de clasificación errónea puede ser calculada como sigue con la ayuda de tablas de la distribución normal reducida, donde ϕ designa la función de repartición de esta distribución.

$$P = \left(u > \frac{D^2/2}{\sqrt{(D^2)}}\right) = 1 - \phi\left(\frac{D^2}{2}\right) = 1 - \phi\left(\frac{1}{2}\sqrt{|\bar{y}_1 - \bar{y}_2|}\right)$$

En ingles: misclassification. En francés: classement erroné.

La función y, que es así definida posee una cierto número de propiedades importantes. Ella es no solamente aquella que minimiza el riesgo de clasificación errónea, pero también, en relación con la prueba T^2 de Hotelling aquella que vuelve máximo la relación de la varianza de y entre las poblaciones de la varianza de y dentro las poblaciones. Dentro del espacio a p dimensiones correspondiente a las p variables observadas, la ecuación: $b_0 + bx = 0$

Es aquella de un hiperplano, donde todos los puntos son tales que las funciones de densidad de probabilidad de dos poblaciones son iguales: $f_1(x) = f_2(x)$.

Este hiperplano divide el espacio a p dimensiones en dos espacios, el uno engloba todos los puntos para los cuales: $f_1(x) > f_2(x)$, y el otro todos los puntos para los cuales: $f_1(x) < f_2(x)$.

Entre el AD y la RM, existe una relación simple, entre la distancia generalizada de Mahalanobis y el coeficiente de correlación múltiple (CCM), teniéndose:

$$D^2 = \frac{(n_1 + n_2)(n_1 + n_2 - 2)R^2}{n_1 n_2 (1 - R^2)}$$

Cuando los efectos de las dos muestras son iguales:

$$D^2 = \frac{4(n-1)R^2}{n(1-R^2)}$$

Estas relaciones permiten calcular las probabilidades de clasificación errónea a partir de los CCM.

7. Enfoque de Fisher del análisis discriminante

Encuentra una buena FD que sea una combinación lineal de las variables originales. Geométricamente: Se busca una buena dirección sobre la que se proyectará los datos de los grupos conocidos y de los que se desea clasificar. Se clasifica en función de qué grupo está más cerca en esa dirección.

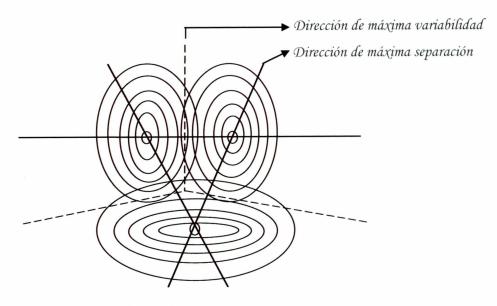


Fig. 1. Representación de las direcciones máximas considerando tres grupos

En la figura, se observa las direcciones de separación y variabilidad de las proyecciones de tres grupos de muestras, las diferentes comparaciones se realizan considerando solo dos a dos los grupos. Una buena dirección tiene que separar bien las medias y tener en cuenta la variabilidad.

8. Distancia de Mahalanobis

La distancia de Mahalanobis utiliza la inversa de la matriz de covarianza (MC), de determinada muestra, de pertenecer a un determinado colectivo, cabe señalar que la distancia de Mahalanobis es adimensional. La distancia D² de Mahalanobis es una medida de distancia generalizada y se basa en la distancia euclídea generalizada al cuadrado que se adecúa a varianzas desiguales; la regla de selección en este procedimiento es maximizar la distancia D² de Mahalanobis.

Se define la distancia de Mahalanobis como: $D_i^2 = (Y_i - \bar{Y})^t S^{-1}(Y_i - \bar{Y})$.

La distancia de Mahalanobis se distribuye según una $\chi^2_{p,\alpha}$ siendo p el número de variables. (α = dado por el investigador, n = número de variables, p = n-2).

Si $\chi^2_{p,\alpha}$ es < al Chi cuadrado teórico no existe observación atípica.

La distancia de Mahalanobis se usa también para calcular la probabilidad de pertenencia a cada grupo usando la regla de Bayes (para eso es necesario proporcionar una distribución a priori). En el resultado que arroja el programa informático⁴ del AD, se tiene la probabilidad de pertenencia al grupo asignado para cada observación.

9. Regla de Fisher con más de dos grupos

La regla de Fisher se extiende al caso en el que se desea clasificar un nuevo dato y exista tres o más grupos. Si se considera los datos utilizados por Fisher⁵ del año 1936, que consistió en medir los pétalos de 3 especies de flores, cada una de ellas con 4 variables, teniéndose una matriz 150 x 4, las tres especies son: iris setosa, iris virginica e iris versicolor.

Utilizando el programa computacional, y observando los resultados, el clasificador ha cometido tan sólo 3 errores: dos datos de la clase versicolor han sido asignados a virginica, y un dato de virginica a versicolor. En la clase setosa resulta que se clasifican todas, lo que significa que pertenecen a la especie iris setosa, no así las muestras 21 y 34 de la especie iris virginica corresponden a la especie iris versicolor y la muestra 34 de la especie iris virginica corresponde a la especie iris versicolor.

Aplicación. La técnica del AD tiene numerosas aplicaciones, utilizandose para abordar problemas complejos en diferentes disciplinas. Una aplicación del ADL a la minería, seria considerar los datos de muestras analizadas por su composición química correspondiendo a tres grupos: área productiva, no productiva y de prospección. Cada muestra compuesta de 13 variables, que corresponde a su composición química, siendo esta información fuente para cada muestra de los tres grupos:

⁴ Desarrollado por el autor de la presente investigación.

⁵ Multivariate Analysis, Maurice Kendal, página 40.

Grp	o. 1 Tiª	Mn ^b	Ag^{c}	Ba	Co	d Cr	a Cu	° Nia	Pba	Sra	V^{a}	Zn^{a}	$Au^{c} \\$
1	7280	1300	30,0	720	30	150	73	50	70	60	70	190	0,02
2	10300	1200	0,7	1280	20	160	25	50	70	90	50	50	0,02
3	6500	700	1,0	1070	20	200	48	70	100	210	50	170	0,01
4	7000	1500	0,7	760	30	160	70	40	110	240	40	250	0,01
5	5100	1000	0,5	740	20	140	39	50	80	50	60	130	0,02
6	10600	2100	0,3	980	30	50	25	30	70	150	160	110	0,01
7	14200	2000	0,2	690	30	70	25	50	60	160	70	180	0,01
8	9700	900	0,2	680	35	70	38	30	70	90	110	250	0,01
9	2300	1500	0,2	710	5	110	50	20	70	80	30	12	0,01
10	12100	6300	0,1	1520	30	30	24	30	80	320	160	190	0,02
11	3000	1100	0,2	510	5	30	15	30	30	240	30	50	0,02
12	7500	2400	0,7	690	30	30	31	10	100	210	40	280	0,03
13	7800	1800	4,0	730	55	40	24	30	20	90	320	90	0,01
14	6900	1500	1,0	326	30	50	25	10	90	70	200	70	0,04
15	11200	3100	1,5	660	50	40	20	40	50	140	280	90	0,01
16	5200	1400	0,8	680	35	50	42	20	50	30	150	150	0,01
17	5100	1500	0,9	700	25	60	67	40	80	40	190	90	0,01
18	10500	2900	0,4	1640	25	20	21	30	30	320	90	200	0,01
19	11500	3200	0,7	710	30	30	15	20	20	260	270	180	0,01
20	7100	1800	0,9	490	75	50	8	10	30	80	180	100	0,02
Grj	o. 2 Ti	Mn ^t	Ag ^c	Ba	a Co	d Cr	a Cu	c Nia	Pb	a Sra	V^a	Zn^{a}	Auc
Grj 1	o. 2 Ti ^a	Mn ^b	Ag ^c 0,1	Ва 160		d Cr	30	10	0	720	140	200	0,01
				160 150	20 20	70 30	30 82	10 10	0 20	720 1580	140 160	200 70	0,01 0,01
1	4820	500	0,1	160 150 50	20 20 10	70 30 10	30 82 61	10 10 10	0 20 0	720 1580 340	140 160 40	200 70 50	0,01 0,01 0,02
1 2 3 4	4820 3040	500 500 600 500	0,1 0,2 0,1 0,1	160 150 50 100	20 20 10 15	70 30 10 30	30 82 61 77	10 10 10 10	0 20 0 0	720 1580 340 650	140 160 40 90	200 70 50 80	0,01 0,01 0,02 0,02
1 2 3 4 5	4820 3040 890 2100 5060	500 500 600 500 700	0,1 0,2 0,1 0,1 0,3	160 150 50 100 140	20 20 10 15 20	70 30 10 30 50	30 82 61 77 154	10 10 10 10 20	0 20 0 0	720 1580 340 650 1240	140 160 40 90 140	200 70 50 80 80	0,01 0,01 0,02 0,02 0,01
1 2 3 4 5 6	4820 3040 890 2100 5060 1980	500 500 600 500 700 700	0,1 0,2 0,1 0,1 0,3 0,1	160 150 50 100 140 80	20 20 10 15 20 15	70 30 10 30 50 20	30 82 61 77 154 63	10 10 10 10 20 20	0 20 0 0 0 0	720 1580 340 650 1240 720	140 160 40 90 140 80	200 70 50 80 80 110	0,01 0,01 0,02 0,02 0,01 0,00
1 2 3 4 5 6 7	4820 3040 890 2100 5060 1980 3220	500 500 600 500 700 700 600	0,1 0,2 0,1 0,1 0,3 0,1 0,2	160 150 50 100 140 80 160	20 20 10 15 20 15 20	70 30 10 30 50 20 30	30 82 61 77 154 63 45	10 10 10 10 20 20 20	0 20 0 0 0 0 0	720 1580 340 650 1240 720 1100	140 160 40 90 140 80 120	200 70 50 80 80 110 60	0,01 0,01 0,02 0,02 0,01 0,00 0,01
1 2 3 4 5 6 7 8	4820 3040 890 2100 5060 1980 3220 3280	500 500 600 500 700 700 600 800	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2	160 150 50 100 140 80 160 90	20 20 10 15 20 15 20 15	70 30 10 30 50 20 30	30 82 61 77 154 63 45	10 10 10 10 20 20 20 30	0 20 0 0 0 0 0 10 20	720 1580 340 650 1240 720 1100 1480	140 160 40 90 140 80 120 70	200 70 50 80 80 110 60 40	0,01 0,01 0,02 0,02 0,01 0,00 0,01 0,00
1 2 3 4 5 6 7 8	4820 3040 890 2100 5060 1980 3220 3280 2020	500 500 600 500 700 700 600 800 700	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1	160 150 50 100 140 80 160 90	20 20 10 15 20 15 20 15 15	70 30 10 30 50 20 30 10 20	30 82 61 77 154 63 45 40 104	10 10 10 10 20 20 20 20 30 20	0 20 0 0 0 0 0 10 20	720 1580 340 650 1240 720 1100 1480 420	140 160 40 90 140 80 120 70 80	200 70 50 80 80 110 60 40	0,01 0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,00
1 2 3 4 5 6 7 8 9	4820 3040 890 2100 5060 1980 3220 3280 2020 4600	500 500 600 500 700 700 600 800 700	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3	160 150 50 100 140 80 160 90 80 160	20 20 10 15 20 15 20 15 15 20	70 30 10 30 50 20 30 10 20 60	30 82 61 77 154 63 45 40 104	10 10 10 10 20 20 20 30 20	0 20 0 0 0 0 0 10 20 0 20	720 1580 340 650 1240 720 1100 1480 420 780	140 160 40 90 140 80 120 70 80 150	200 70 50 80 80 110 60 40 70	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,00
1 2 3 4 5 6 7 8 9 10	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100	500 500 600 500 700 700 600 800 700 700 500	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2	160 150 50 100 140 80 160 90 80 160 100	20 20 10 15 20 15 20 15 15 20 15	70 30 10 30 50 20 30 10 20 60 30	30 82 61 77 154 63 45 40 104 48 65	10 10 10 10 20 20 20 30 20 10	0 20 0 0 0 0 10 20 0 20 20	720 1580 340 650 1240 720 1100 1480 420 780 710	140 160 40 90 140 80 120 70 80 150 100	200 70 50 80 80 110 60 40 70 50 40	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,00
1 2 3 4 5 6 7 8 9 10 11 12	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020	500 500 600 500 700 700 600 800 700 500 600	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2	160 150 50 100 140 80 160 90 80 160 100 90	20 20 10 15 20 15 20 15 15 20 15	70 30 10 30 50 20 30 10 20 60 30 10	30 82 61 77 154 63 45 40 104 48 65	10 10 10 20 20 20 30 20 10 10	0 20 0 0 0 0 10 20 0 20 20 30	720 1580 340 650 1240 720 1100 1480 420 780 710 1310	140 160 40 90 140 80 120 70 80 150 100 110	200 70 50 80 80 110 60 40 70 50 40 30	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,00
1 2 3 4 5 6 7 8 9 10 11 12 13	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860	500 500 600 500 700 700 600 800 700 700 500 600 500	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2	160 150 50 100 140 80 160 90 80 160 100 90 70	20 20 10 15 20 15 20 15 15 20 15 15 20	70 30 10 30 50 20 30 10 20 60 30 10 20	30 82 61 77 154 63 45 40 104 48 65 69 63	10 10 10 10 20 20 20 30 20 10 10 0	0 20 0 0 0 0 10 20 0 20 20 30 10	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480	140 160 40 90 140 80 120 70 80 150 100 110 80	200 70 50 80 80 110 60 40 70 50 40 30	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,02 0,00
1 2 3 4 5 6 7 8 9 10 11 12 13 14	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860 2800	500 500 600 500 700 700 600 800 700 500 600 500 700	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2 0,1	160 150 50 100 140 80 160 90 80 160 100 90 70	20 20 10 15 20 15 20 15 15 20 15 15 15 15	70 30 10 30 50 20 30 10 20 60 30 10 20 20	30 82 61 77 154 63 45 40 104 48 65 69 63 58	10 10 10 20 20 20 30 20 10 10 0	0 20 0 0 0 0 10 20 0 20 20 30 10 20	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480 730	140 160 40 90 140 80 120 70 80 150 100 110 80 120	200 70 50 80 80 110 60 40 70 50 40 30 50 80	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,02 0,00 0,01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860 2800 1040	500 500 600 500 700 700 600 800 700 500 600 500 700 1600	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,1 0,1	160 150 50 100 140 80 160 90 80 160 100 90 70 110 20	20 20 10 15 20 15 20 15 15 20 15 15 15 20 15 5	70 30 10 30 50 20 30 10 20 60 30 10 20 20	30 82 61 77 154 63 45 40 104 48 65 69 63 58 37	10 10 10 20 20 20 30 20 10 10 0	0 20 0 0 0 0 10 20 0 20 20 30 10 20 10	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480 730 140	140 160 40 90 140 80 120 70 80 150 100 110 80 120 30	200 70 50 80 80 110 60 40 70 50 40 30 50 80	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,02 0,00 0,01 0,01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860 2800 1040 4640	500 500 600 500 700 700 600 800 700 500 600 500 700 1600 800	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2 0,1 0,1 0,1 0,3	160 150 50 100 140 80 160 90 80 160 100 90 70 110 20 220	20 20 10 15 20 15 20 15 15 15 10 15 15	70 30 10 30 50 20 30 10 20 60 30 10 20 20 10 20	30 82 61 77 154 63 45 40 104 48 65 69 63 58 37 121	10 10 10 20 20 20 30 20 10 10 0 0	0 20 0 0 0 0 10 20 20 20 20 20 10 20 20	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480 730 140 1200	140 160 40 90 140 80 120 70 80 150 100 110 80 120 30 210	200 70 50 80 80 110 60 40 70 50 40 30 50 80 80	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,00 0,01 0,01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860 2800 1040 4640 4990	500 500 600 700 700 600 800 700 500 600 500 700 1600 800 900	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2 0,1 0,1 0,1 0,3 0,3	160 150 50 100 140 80 160 90 80 160 100 90 70 110 20 220 190	20 20 10 15 20 15 20 15 15 20 15 15 15 20 15 15 20	70 30 10 30 50 20 30 10 20 60 30 10 20 20 10 20 40	30 82 61 77 154 63 45 40 104 48 65 69 63 58 37 121 59	10 10 10 10 20 20 20 30 20 10 10 0 0 20 20	0 20 0 0 0 0 10 20 20 20 30 10 20 10 20 30	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480 730 140 1200 480	140 160 40 90 140 80 120 70 80 150 100 110 80 120 30 210 230	200 70 50 80 80 110 60 40 70 50 40 30 50 80 160 120	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,02 0,01 0,01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860 2800 1040 4640 4990 2830	500 500 600 500 700 700 600 800 700 500 600 500 700 1600 800 900 800	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2 0,1 0,1 0,1 0,3 0,2	160 150 50 100 140 80 160 90 80 160 100 90 70 110 20 220 190 120	20 20 10 15 20 15 20 15 15 20 15 15 15 15 20 15 15 15 15 15	70 30 10 30 50 20 30 10 20 60 30 10 20 20 40 20	30 82 61 77 154 63 45 40 104 48 65 69 63 58 37 121 59 40	10 10 10 20 20 20 30 20 10 10 0 0 20 20	0 20 0 0 0 0 10 20 20 20 20 10 20 20 30 20 20 20	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480 730 140 1200 480 690	140 160 40 90 140 80 120 70 80 150 100 110 80 120 30 210 230 140	200 70 50 80 80 110 60 40 70 50 40 30 50 80 160 120 60	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	4820 3040 890 2100 5060 1980 3220 3280 2020 4600 3100 3020 1860 2800 1040 4640 4990	500 500 600 700 700 600 800 700 500 600 500 700 1600 800 900	0,1 0,2 0,1 0,1 0,3 0,1 0,2 0,2 0,1 0,3 0,2 0,2 0,1 0,1 0,1 0,3 0,3	160 150 50 100 140 80 160 90 80 160 100 90 70 110 20 220 190	20 20 10 15 20 15 20 15 15 20 15 15 15 20 15 15 20	70 30 10 30 50 20 30 10 20 60 30 10 20 20 10 20 40	30 82 61 77 154 63 45 40 104 48 65 69 63 58 37 121 59	10 10 10 10 20 20 20 30 20 10 10 0 0 20 20	0 20 0 0 0 0 10 20 20 20 30 10 20 10 20 30	720 1580 340 650 1240 720 1100 1480 420 780 710 1310 480 730 140 1200 480	140 160 40 90 140 80 120 70 80 150 100 110 80 120 30 210 230	200 70 50 80 80 110 60 40 70 50 40 30 50 80 160 120	0,01 0,02 0,02 0,01 0,00 0,01 0,00 0,02 0,01 0,02 0,01 0,01

Gr	p. 3 Ti	Mn ^l	Ag ^o	Ba	a Co	d Cr	a Cu	ı ^c Ni ^a	Pb	a Sra	V a	Zn^{a}	$Au^{c} \\$
1	4260	800	0,3	180	20	60	128	30	30	460	110	80	0,02
2	6500	1200	0,5	380	30	40	72	50	20	320	90	160	0,01
3	12200	5200	1,5	630	25	80	39	40	90	210	200	180	0,01
4	1080	1600	0,2	80	5	10	102	0	10	160	30	80	0,00
5	3820	500	0,2	170	25	40	60	20	10	1100	160	40	0,02
6	1020	2400	0,1	20	0	10	28	0	0	1320	20	60	0,00

^a Determinado lo más cercano a 10 ppm. ^b Determinado lo más cercano a 100 ppm.

Resultados. Procesando esta información se observo que las muestras 9 y 15 del segundo grupo corresponden al tercer grupo, la muestra 5 del tercer grupo corresponde al segundo grupo; obteniendose la clasificación final con los siguientes resultados:

Cuadrado generalizado de Mahalanobis = 279,88

En esta aplicación se tienen tres grupos, con 13 variables, por consiguiente se tendrán tres funciones discriminantes lineales, que son las siguientes:

	Función discriminante 1	Función discriminante 2	Función discriminante 3
Constante	-16,71816	-15,47526	-16,03613
Variable 1	-0,00053	-0,00020	-0,00051
Variable 2	0,00000	0,00092	0,00571
Variable 3	-0,05420	-0,25450	-0,40001
Variable 4	0,01443	-0,00121	-0,00972
Variable 5	0,24835	0,04631	0,12189
Variable 6	0,01905	0,05187	0,05311
Variable 7	0,03823	0,09533	0,13617
Variable 8	0,03740	0,03363	0,20224
Variable 9	0,06527	-0,05170	-0,08632
Variable 10	0,00537	0,01480	0,00704
Variable 11	0,01844	0,03457	-0,00345
Variable 12	0,02378	0,03199	0,02631
Variable 13	237,12320	235,17480	259,0354

^c Determinado a la fracción de ppm.

^d Determinado lo más cercano a 5 ppm.

Evaluación de funciones de clasificación para cada observación

Grupo 1	Probabilidad asociada con la	Función más
No obs.	más grande función discriminante	grande
1	1,00000	1
2	1,00000	1
3	1,00000	1
4	0,9998	1
5	0,99992	1
6	1,00000	1
7	0,99550	1
8	1,00000	1
9	0,99889	1
10	0,99999	1
11	0,80447	1
12	1,00000	1
13	0,99999	1
14	0,99995	1
15	0,99922	1
16	0,99999	1
17	0,99999	1
18	1,00000	1
19	0,75983	1
20	1,00000	1
Grupo 2	Probabilidad asociada con la	Función más
N° obs.	más grande función discriminante	
1	0,99975	2
2	1,00000	
3	0,89424	2
4	0,98131	2 2 2 2
5	0,66340	2
6	0,99896	2
7	0,99694	2
8	0,99907	2
9	0,98893	2
10	0,99997	2
11	0,96769	2
12	0,99295	2
13	0,99993	2
14	0,99616	2 2 2 2 2 2 2 2 2 2 2 2
15	0,99687	2
16	0.00640	2
	0,98649	2

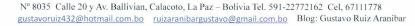
Grupo 3 Nº obs.	Probabilidad asociada con la más grande función discriminante	Función más grande
1	0,96951	3
2	0,99741	3
3	0,99959	3
4	0,99940	3
5	0,55793	3

10. Conclusiones

Las muestras estarán bien clasificadas, si todas pertenecen al mismo grupo, siendo este el fin perseguido por la técnica del AD, pero puede ocurrir que en cada grupo existan muestras que pertenezcan a otros grupos, si esto acontece se debe sacar estas muestras de los grupos correspondientes, lo cual lo realiza el programa informático. Los resultados muestran la probabilidad de pertenecer al grupo correspondiente.

Colaboración

Dr. Manuel Febrero Bande. Dr. en Estadística e Investigación Operativa (1985-1990) Universidad de Santiago de Compostela - Santiago de Compostela - España


Prof. M. Nilda Avilés de Ruiz. Lic. en Idiomas. Universidad Autónoma Gabriel René Moreno. Santa Cruz – Bolivia (Agosto, 2005)

Bibliografía

- 1. Dagnelie Pierre, analyse statistique á plusieurs variables. Les presses agronomiques de Gembloux, Bélgica, 1975 (2da. Edición), pp. 362 Xiv.
- 2. Kendall s. Maurice, multivariate analysis. Charles Griffin & co. Ltd., Londres, Inglaterra, 1975, pp. 210 Xi.
- 3. Davis c. John, statistics and data analisis in geology. John Wiley & Sons, New york, Estados Unidos, 1973, pp. 550 Vii.
- 4. Ruiz Aranibar Gustavo⁶. Libreria cientifica de programas informáticos, La Paz -Bolivia.

Pensamiento: Quien se decide a: enseñar, escribir o investigar, nunca debe dejar de: aprender, estudiar o producir intelectualmente, para divulgar y exponer este conocimiento

